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Cluster distribution and long-range ordering 
in multicomponent interstitial alloys 

L. D A B R O W S K I  
Institute of Atomic Energy, 05-400 Otwock-Swierk, Poland 

Formulae determining the long-range order parameters and the population of clusters of 
interstitial atoms were derived from low-temperature approximation of fundamental 
principles. The size of the clusters, the range of interactions and the number of the alloy 
components were not limited. The method proposed is not sensitive to the kind of a crystal 
structure and thus can be used for real systems. 

1. Introduction 
The ordering of interstitial atoms in solid solutions is, 
from the formal point of view, analogous to that in 
substitutional alloys. However, detailed consideration 
of the systems imposes several rigorous and hard to 
fulfil conditions. For instance, the potentials of config- 
urational interactions are usually of long-range nature 
and, according to the estimations presented elsewhere 
[-1], they may expand up to distances of many coord- 
ination spheres. From; our previous analysis [-2] it 
appears that the interaction range may be even longer, 
and in some crystallographic direction it may reach up 
to 6 lattice constants. This stems from the fact that 
besides the short-range potentials of chemical origin, 
long-range deformational potentials exist which are 
created by the lattice deformation around an occupied 
interstitial site. This is the main difficulty in the theor- 
etical study of a condensed system on a microscopic 
level, taking into account simultaneous interactions 
with many neighbouring systems. 

The magnitude of the configurational potentials, 
e.g. in a substitutional alloy such as CuZn, is of the 
order of 350 K [3]. Interactions of the same order of 
magnitude are observed also in other systems, for 
example, in magnetic materials exhibiting Curie or 
Neel points below 1000 K. However, according to 
theoretical calculations [-1, 2, 4] some values of config- 
urational potentials in the Ee-C system are of the 
order of 3000-25 000 K. Therefore, the ratio Vij/kT is 
much more than 1 over the whole temperature range 
in which this phase exists. The condition mentioned 
above renders useless all methods based, for instance, 
on a high-temperature diagram expansion. 

In the systems of interest, strongly bonded, durable 
clusters should exist. At present, the most frequently 
used method is cluster expansion, first introduced by 
Coniglio et al. [-5, 6, 7]. This method can easily be 
obtained from Mayer's mathematical cluster. The 
Mayer's functions, however, have singularities at 0 K, 
and therefore they cannot be applied for a very low- 
temperature regime (Vq/kT>>l). Attempts to use 
a low-temperature approximation in systems with an 
Ising-like Hamiltonian, encounter serious difficulties 
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when the interactions with remote neighbours are 
taken into account, and practically, they do not work 
beyond the first- and second-neighbour interactions 
[8]. Historical development of the most important 
methods is reviewed elsewhere [9]. 

Evidence from experimental studies [10], indicates 
that in the interstitial solid solutions, apart from the 
two-particle clusters, three-particle clusters can also 
be formed. In addition, the existence of multicompo- 
nent clusters cannot also be a priori excluded. In our 
previous paper [11], we proposed a low-temperature 
expansion approach. However, in practice, considera- 
tion of larger than two-particle configuration, is ex- 
tremely tedious. Interstitial alloys may contain several 
different impurity atoms in the interstitial sites. If, in 
addition, such a system contains different substitu- 
tional elements around which the additional clusters 
of interstitial atoms may be formed, then phenomena 
of short-range ordering can be very complex. Such a 
situation occurs fairly commonly in all iron alloys being 
used for practical purposes. Therefore, for a theo- 
retical consideration of such systems it is important to 
be able to take into account a sufficiently large num- 
ber of components. 

To fulfill this requirement, we developed a new 
approach, which is proposed in the present paper. The 
combination method in the calculation of the config- 
urational entropy is adopted. This allows the entropy 
of the system to be expressed as an explicit function of 
the ordering parameters and simplifies the form of the 
final formulae describing the thermodynamics. This 
may play a decisive role in the consideration of real 
systems, characterized by a large number of short- 
order parameters. Such a situation occurs when the 
interactions with many coordination shells are taken 
into account, especially, in multicomponent alloys. 
A way of obtaining a configurational entropy refers to 
the works by Bethe and Wills [12], Cowley [,13-16] 
and Khachaturyan [13]. This method was also 
applied in our previous works [-3, 11,19,20] where 
probabilities Of the formation of different atomic con- 
figurations were taken into account. In our last paper 
[-2], we presented for the first time the preliminary 
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foundation of a cluster model, limited to one alloying 
component in the absence of long-range order. The 
present paper is aimed at the generalization of ideas 
developed previously [2]. 

2. Formulation of the problem 
Following [19] the most general form of the Hamil- 
tonian of a multicomponent substitutional alloy is 

H = Z(.) 1/n! Z(. .... 4) Z(ij...k) V(ij...k,,, .... 4) 

C@) C(j,,) ... C(kx) (1) 

where V(i j ... k, Ft .... 4) are n-particle irreducible potentials 
between the atoms of the sort #v. . .  2, which are dis- 
posed over the lattice sites i j . . .  k; C(~u), C(j~), ... C(k4) 
are operators of the respective concentrations. For  
example, C@) is a stochastic function that is equal to 
unity when a # sort of atom is located at point i of the 
crystal lattice, and is equal to zero otherwise, an ana- 
logous rule holding true for the remaining subscripts. 

The Hamiltonian (Equation 1) can be applied to 
describe the interactions in multicomponent inter- 
stitial alloys, by treating an empty interstitial site as if 
it is occupied by an atom of another kind. Then, as in 
substitutional alloys, in each lattice point, an obvious 
identity is satisfied 

Z(~) C(iu) = 1 (2) 

This means, that a number of mutually independent 
values of C~, is exactly equal to the number of real 
atomic components in the interstitial sites. 

Let us consider a partition function of Gibbs 
ensemble 

Z = exp ( - H / k r )  (3) 

where k and T are Boltzmann's constant and the 
absolute temperature. For  a specified three-particle 
cluster of fixed suffixes i , j  and k, the factor represent- 
ing this cluster in the partition function is 

Z(ijk.~v4) = exp [ - (V(~j,.~) C(i.) C(~v) 

-~ W(jk, v2 ) C(/v) C(k4) -~ W(ik, l~2) C(i#) C(k4) 

+ V(qk,~4) C@) C(j~) C(k4) ) / kT]  (4) 

If all sites i , j  and k are occupied (C@)= C(j~)= 
C(k4) = 1), Equation 4 is equivalent to 

Z(~jk,~4) = exp ( - V'(i~k, uv;,) C(i,~) C(~) C ( ~ ) / k  T ) 

(Sa) 

where 

V(ijk, gv4 ) = V(ij,  ltV) -~ V(jk,  v4 ) ~- V(ik,g4) -~ V(ijk, uv4) 

(5b) 

Thus, the,total equivalent potential in a three-particle 
cluster is equal to the sum of the potentials of all 
two-particle interactions plus potential V(~k,~,~x) ac- 
counting for a change of two-particle potentials 
as a result of the presence of the third atom. An 
identical result holds for a cluster of arbitrary size; it is 
necessary to sum possible interaction potentials of the 
highest possible order and of all other lower orders. 
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Accounting for Equation 5, we shall present the parti- 
tion function (Equation 3) in the form 

Z = Z(ij,~,~)Z(ijk,~v4) ... Z(ij.. .k,~ .... 4)""  (6) 

where Z(q.~v), Z(ijk, ~ ) ,  . . .  Z(ij_.k, ,v. . .  :o represent the 
contributions of successive two-, three-, ... n-particle 
clusters. 

At absolute zero, Equation 6 is simplified in a natu- 
ral way. For  a one-component alloy, all clusters except 
that with the lowest binding energy, disappear; the 
cluster with the lowest binding energy is the most 
favourable energetically. In such a case, only this one 
factor, associated with a unique configuration, partici- 
pates in the partition function in Equation 6. It is 
identical in all components of the partition function 
(AZ(i~...k,u~...4) = 0). The situation is analogous for 
a larger number of dopant components. If the chem- 
ical composition does not satisfy a cluster 
stoichiometry of the lowest binding energy, then the 
excess atoms form additional clusters to satisfy the 
route leading to the absolute minimum free energy of 
the system. In each real case the situation is unam- 
biguous: the number of clusters is finite and the fluctu- 
ation of each Z(~j...k,~ .... 4)) factor is equal to zero. 

Making use of an identical transform of the parti- 
tion function Z 

Z - [ e x p ( S / k ) ]  Zex p (  - S/k)  - [ e x p ( S / k ) ]  < Z )  (7) 

where S is the entropy of the Gibbs ensemble, we 
obtain the following expression for the internal 
energy, U [11] 

U = - k r l n  {exp( -- H / k T ) >  (8) 

By replacing all these factors with their thermody- 
namic mean values, we obtain an expression for the 
internal energy 

U = 1/2 Z'(~j, ,v) V~ij, ~v) < C(~) C(j, v) ) 

+ 1/3! Z'(~k,,~4) (C(i , )  C(j~) C(k4)> + ... 

+ 1/n! Y/(ij . . .k, ,  .... 4) V[i~...k., .... 4) 

<C(i,)  C(j~) . . .  C(k4)> + ... (9) 

where Z' means that in each such sum, all lattice sites 
taking part in the formation of the clusters of other 
orders are excluded. The lattice sums of Equation 
9 include only those components for which, simulta- 
neously, all factors C(~,), C(j~)... C(jx)= 1. By sum- 
ming we obtain 

U = NZ(~) V~ C~(E(~I) n(.,~l)) (10) 

where N is the total number of lattice sites, 
V= = V{ij. . .k,,  .... 4)/n~, n~ is the number of atoms in 
cluster c~, C~ the probability of the existence of cluster 
ct, and n(u,~t) the number of atoms a sort kt belonging 
to cluster c~, located in the sublattice 1. 

Taking into account the law of conservation of the 
total number of particles in the system, we obtain 

Z~ C~n(.,~l) = C(~, 1) (11) 

where C(u, 1) is the atomic concentration of impurity 
in the sublattice 1. 



In fact, Equation 10 represents an expansion of 
internal energy over the contributions of correspond- 
ing isolated clusters and this way is a cluster method. 
This is a result of low-temperature approximation 
and, in particular, of neglecting fluctuations of factors 

AZ( i j . . .  k, uv... 2,). 

3. Entropy 
The entropy, S, can be expressed as [3] 

S = SL + S~h (12) 

where SL is the entropy connected with long-range 
ordering, and S~h the entropy connected with short- 
range ordering, in our case with clusters. Adapted for 
a multicomponent interstitial, the expression for en- 
tropy SL, according to [20], is 

S~ = - k [Z(u ' 1) C(,, a) In C(u ' 1) 

+ (1 -- E(u,x)Co,,1))ln(1 - Y~(u, 1) C(#, 1))-1 (13) 

Let us calculate the entropy Ssh, unlike Sb by the 
combination method. It is easy to calculate that the 
total number of clusters of type ~ is NC~. Let us 
calculate the total number of sites in the crystal, al- 
lowed by the given crystallographic structure, possible 
to be occupied by such a cluster. By translating a given 
cluster over the whole crystal we obtain N such possi- 
bilities. Moreover, there are R~ possibilities of trans- 
forming a given cluster into another one, equivalent 
crystallographically. R~ takes into account only those 
clusters which cannot be obtained from the remaining 
clusters by a translation manner. In addition, in the 
case of multicomponent alloys, q~ possible ways of 
mutual replacement of the potentials V~ must be taken 
into account. As a final result, a given cluster config- 
uration can be accomplished in the crystal in NR~ q~ 
ways. Omitting technical details of calculations, 
the total configuration entropy of the system can be 
written as 

S~h = - -  k N Z ( ~ )  n~ { C ~  in [ C ~ / ( R ~  q~ - C~)] 

+ R~q~ln [(R~C~ - C~)/R~q~]} (14) 

Treating parameters C~ as variation parameters, from 
the condition of the minimum of the free energy 
F = U - TS, we obtain, after differentiation, the equi- 
librium values of these parameters 

C~/(R~ q~ -- Ca) = N1/exp [ - V~/(kT)] (15) 

Normalization constants N1 appears in Equation 15 
as a result of taking into account the law of conserva- 
tion of the total number of particles in the system. 
Values of this constant can be found numerically by 
substituting the actual values of atomic concentration 
C(u, 1) into Equation 10. In the case of one sublattice in 
a one-component alloy, if condition R~ q~ >> C is satis- 
fied, which is usually the case because R~ > 1, then 
approximately 

N1 = C/E(~)R~exp(-  V~/kT ) (16) 

In this approximation, 

C~/C~ = R~ q~ exp [ ( -  V~ + Vp)/kT ]/(Rp q~) (17) 

is valid, while all atoms in Equation 17 belong to the 
same sublattice 1. The Equation 15 along with the 
conditions given by Equation 11 enable the numerical 
values of short-range order parameters, i.e. the cluster 
population, to be determined. The same condition of 
free-energy minimum allows the equilibrium values of 
long-range order parameters to be ascertained. The 
numerical evaluation of these values gives no technical 
troubles. 

4. Discussion 
The actual expressions for the probability of the exist- 
ence of clusters of c~ kind, C~, make it possible to 
estimate the temperature range of the applicability of 
the obtained solutions, the necessary condition being 
[V~/kT[>> 1 at least for one type of cluster. The deter- 
mination of low-temperature cluster expansion was 
the main purpose of the present work. Apart from the 
values of C~, values of long-range order parameters, 
which determine the impurity concentrations in par- 
ticular sublattices, were also found. The method 
can be applied to any kind of system, provided the 
Hamiltonian of these systems can be described by 
Equation 1 of the Ising-like type. 

There are no a priori limitations concerning the 
range of interactions and the type and size of clusters. 
In this case, inevitably, the problem of the large 
number of clusters arises. These clusters differ 
from each other with regard to size, topology and, 
in multicomponent alloys, also to the chemical com- 
position. Equation 17 enables a rough selection to 
be made, relying on the choice between all popula- 
tions of the clusters that are meaningful in the 
theoretical model. A sole criterion of such a selection 
is the value of binding energy shared by a single 
atom, V~. 

Moreover, the developed method does not refer 
directly to a particular crystalline structure. All struc- 
tural information, necessary to solve the ordering 
problem, is simply comprised in the values of R~ and 
q~ coefficients, in Equation 14. Accordingly, it can be 
easily applied to other interstitial alloys and to other 
types of crystallographic structure. In the case of prac- 
tical applications, a crucial point is the knowledge of 
the potentials V(ij... k, uv... 4). However, this is a separate 
problem, which is outside the scope of the present 
work. 
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